SADCMET Regional Interlaboratory Comparison

SADC.T-P1

Liquid-in-glass thermometry

Report: draft A

Contact person:

Hans Liedberg, CSIR-NML P O Box 395 0001 Pretoria South Africa Tel: +27-12-841 2753 Fax: +27-12-841 2131/4458 E-mail: hliedber@csir.co.za

Introduction

This report describes the results of the interlaboratory comparison (ILC) SADC.T-P1, comparing liquid-inglass thermometer calibration capabilities from 0°C to 50°C.

The ILC was proposed at the SADCMET Working Group on Thermometry meeting held on 23 March 1999 in Mauritius. Invitations to participate were sent to all SADC countries. The countries that participated are listed in the final circulation schedule below.

This ILC is designated as a regional pilot comparison. Based on its success, it is hoped that a regional key or supplementary comparison, covering the working ranges of the participating laboratories more completely, may be organised in the near future.

Measurement procedure

Two mercury-in-glass thermometers were circulated to 7 laboratories (including the pilot laboratory): Description: Enclosed-scale mercury-in-glass thermometers

Desemption.	Enclosed sould meredary in glass thermometers
Manufacturer:	Amarell
Serial numbers:	73-00 and 74-00
Full range:	-11,8°C to 52,2°C
Graduation:	0,1°C
The thermometer 74-00	was a backup, if the thermometer 73-00 were to be damaged.

The comparison protocol, containing detailed instructions for the handling and measurement of the thermometers, is attached as an appendix. The inspection and measurement procedure may be summarised as follows:

- 1) a visual inspection using a magnifying glass
- 2) rejoining, if necessary, of the mercury column
- 3) a rest period of 3 days after the initial inspection and possible re-joining of a broken mercury column
- 3) a measurement at the ice point
- 4) measurements at 10°C, 20°C, 30°C, 40°C and 50°C
- 5) a second measurement at the ice point

It was not necessary for any laboratory to rejoin the mercury column of either thermometer. However, the thermometer 73-00 broke before measurement at BOBS.

Final circulation schedule

Contact details of the participants:

Contact person	Laboratory	Postal address	Country	Tel	Fax	Email
Mr Hans Liedberg /	CSIR-NML	PO Box 395,	South	+27-12-841	+27-12-841	hliedber@csir.c
Mrs Brigitte Monard		0001 Pretoria	Africa	2753	2131/4458	o.za
Dr Satya P Varma /	NPL	New Delhi	India	+91-11-578	+91-11-585	spvarma@csnp
Dr Y P Singh		110012		6592	2678/576 4189	l.ren.nic.in
Mr Christian Ng Ha	MSB	Moka	Mauritius	+230-433	+230-433	msb@intnet.mu
Kwong				3648	5051/5150	
Mr Joel M Kioko /	KEBS	PO Box 54974,	Kenya	+254-2-502	+254-2-503 293	kebs@africaonl
Mr Kenneth K		Nairobi		543/211		ine.co.ke
Sende						
Ms Julia Rose / Mr	SBS - NPL	PO Box 953,	Seychelles	+248-375	+248-375 151	sbsorg@seych
Archange Sophola		Victoria, Mahe		333		elles.net
Mr Victor	SIRDC –	PO Box 6640,	Zimbabwe	+263-4-86	+263-4-86	vmundembe@s
Mundembe	NMI	Harare		0321/33	0350/1	irdc.ac.zw
Mr Keeper Morgan	BOBS	P/Bag BO 0048,	Botswana	+267-56	+267-56 4042	k_morgan@bo
/ Mr Emmanuel		Gaborone		4044		bstandards.bw
Tabona						

Laboratory	Measurement period
CSIR-NML	2 to 3 Jan 2001
National Physical Laboratory (NPL), India	14 to 25 Jan 2001
CSIR-NML	27 Feb 2001
Mauritius Standards Bureau (MSB)	20 to 23 April 2001

CSIR-NML	22 May 2001
Kenya Bureau of Standards (KEBS)	15 to 16 August 2001
Seychelles Bureau of Standards – NPL (SBS - NPL)	19 to 20 Sept 2001
CSIR-NML	21 Nov 2001
SIRDC - NMI	8 to 9 Dec 2001
CSIR-NML	14 to 28 Jan 2002
Botswana Bureau of Standards (BOBS)	28 Feb to 18 March 2002
CSIR-NML	2 April 2002

Data analysis

The initial measurements at CSIR-NML are used as the reference values.

The differences Lab Value – Reference Value (LV - RV) are determined as follows:

LV - RV = correction determined at participating lab – correction determined during reference measurements

En values (deviations normalised with respect to the uncertainties of the laboratories) are used to quantify the agreement between the participating laboratory and the reference values:

$$En = (LV - RV) / \sqrt{(U_{LV}^2 + U_{RV}^2)}$$

where U_{LV} and U_{RV} are the expanded uncertainties of measurement (k=2).

The reduced correction, i.e. the difference between the correction at temperature T and the correction at $0^{\circ}C$ (corr_T – corr_{0°C}), is also reported.

Results

The type of reference thermometer, heat source and immersion depth (total or partial) used by each laboratory is given in the table below:

Laboratory	Ref thermometer	Heat source	Rising / stable temp	Immersion
CSIR-NML	Industrial PRT (4-wire)	Ice point, stirred water bath	Rising	Total
NPL, India	Standard PRT	Ice point, stirred water bath	Stable	Total
MSB	Heto F161 (PRT ?)	Ice point, stirred water bath	Stable	Total
KEBS	LIG thermometers	Ice point, stirred water bath	Stable	Total
SBS – NPL	LIG thermometers	Ice point, stirred water bath	Stable	Partial
SIRDC - NMI	100 Ω PRT	Water / ethylene glycol bath	Stable, rising	Total
BOBS	LIG thermometer	Ice point, stirred water bath	Stable	Partial

The attached spreadsheet "SADCTP1Results.xls" lists all the results received.

Uncertainty budgets for the labs are also attached. These were calculated by CSIR-NML based on information received from the participants. The degrees of freedom of several components were assigned quite arbitrarily, limited information being available to estimate them.

All laboratories have En<1, with the exception of those indicated below:

Lab	Temperature (°C)	LV-RV (°C)	En value
KEBS	50	0,14	1,93
BOBS	10	0,13	1,15

The following points were noted:

KEBS: The deviation at 50°C is larger than would be expected to be caused by inadequate immersion of the travelling thermometer. (For example, if the average emergent liquid column temperature was 35°C, the thermometer would have to be immersed to the –8°C mark or less, for it to read low by this amount.)

BOBS: There were some difficulties achieving suitable immersion depths at 10°C and 20°C.

Conclusions

The results of this ILC are, in general, most satisfactory. With minor exceptions, the laboratories were able to keep to the original circulation schedule. The success of this pilot comparison provides a strong motivation to organise a regional supplementary comparison, to compare the Best Measurement Capabilities (BMCs or

CMCs) of the labs over a wider temperature range. Industrial platinum resistance thermometers (IPRTs) with a readout may be suitable travelling thermometers. (They are more robust than liquid-in-glass (LIG) thermometers, and can generally be used over a wider temperature range.) The types of thermometers calibrated by the labs, their temperature ranges and Best Measurement Capabilities should be taken into account when deciding on the protocol for such a comparison.